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Tilt and temperature dependence of the pitch in 
the chiral smectic C phase 

by W. J. A. GOOSSENS 
Philips Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, 

The Netherlands 

(Received 7 November 1985; accepted 25 Jury 1986) 

The chirality of the constituent molecules in the chiral smectic phase induces 
a helical structure with a pitch, po. Because of the tilt and chirality there is a 
spontaneous polarization and a bend deformation which act upon the induced 
helix. The resulting pitch is described as a function ofp, using the phenomenologi- 
cal theory of a chiral smectic C phase. The pitch, p o ,  is then calculated using a 
molecular theory of the cholesteric phase. The results obtained explain the exper- 
imental observations, at least qualitatively. 

1. Introduction 
The smectic C phase has two specific features; the director is tilted with respect to 

the layer normal and the phase is optically biaxial [l]. Whether the biaxiality results 
from the tilt or vice versa is not well understood. None the less it can be shown that 
both go together in the same way as chirality and biaxiality in the cholesteric phase, 
however small the biaxiality may be [2]. When the smectic C phase is composed of 
chiral molecules the tilted director rotates from plane to plane around the layer 
normal, creating a helical structure much like that in cholesterics [3]. Because of the 
reduction of symmetry the chiral smectic C phase can sustain a spontaneous polariz- 
ation in each smectic plane perpendicular to the plane of the tilt in that plane [4]. 
Much experimental work has been done to elucidate the properties and the nature of 
these phases, especially with regard to the tilt and temperature dependence of the pitch 
and spontaneous polarization. The theoretical descriptions of the phase properties up 
to now are mostly phenomenological, based upon a Landau type of approach using 
macroscopic symmetry arguments. Many of these aspects are discussed in [5-81. The 
molecular theories put to the fore in [9,10] are of no interest. The unspecified 
temperature dependence of the twist in [9] associated with the smectic A-smectic C 
phase transition in [l 11 is based on the unjustified multiplication of some coupling 
constants with (1 + TIT,) I.c., which has no physical significance; cf. [12,13]; 
T i '  a ASlr, is a measure for the orientation-dependent translational entropy ASlr. in 
the nematic phase. The outcome of the theory in [lo] is that both the calculated twist 
and the calculated expansion coefficient a2,, , claimed to describe the S,-S, phase 
transition and to be compared with the coefficient a in equation (l), where 
a a T - TsCs,, are almost temperature independent which does not correspond with 
physical reality; cf. also 1121. In this paper we shall therefore focus attention on the 
molecular aspects of the chirality in the smectic C phase, especially with regard to the 
tilt and temperature dependence of the pitch of the helix. In 52 we first recapitulate 
and reformulate, in brief, the usual description of the chiral smectic C phase. There 
it is shown that the actual pitch p ,  observed experimentally and determined by the 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



522 W. J. A. Goossens 

ground state pitch po and the spontaneous bend deformation, depends on the tilt 
angle. In $3 we show how the existing theory for cholesterics can be adapted to 
calculate the ground state pitch p o  for the chiral smectic phase. The results of $2 and 
$3 are discussed in $4. 

2. Phenomenological description 
In the smectic C phase the molecules are arranged in layers; the director, n, is tilted 

with respect to the layer normal which is chosen along the 2 axis of a fixed macroscopic 
coordinate system X ,  Y,  2. Because of the tilt there is a non-vanishing component of 
n in the smectic planes which can be described by the vector 

here 
c = in, + jn,,; 

c2 = 1 - ns = sin20, 

where O is the macroscopic tilt angle. The specific order in the smectic C phase can 
be described by the vector invariant 

n A c = -inynl + jn,n,; 

the length of this vector determines the magnitude of the tilt and its direction fixes the 
two-fold symmetry axis C, in each smectic plane. The free energy associated with this 
order is then written as [14-161 

a b 
F, = - (n A c ) ~  + - (n A c ) ~ ,  2 4 

= - a n5c2 + - b n:c4 
2 4 

When the smectic C phase is composed of chiral molecules, c rotates around the 2 
axis, creating a helical structure with 

n, = cos4(z)sinO, ny = sin4(z)sinO. 

Since the spontaneous twist induces a bend deformation there is an additional elastic 
free energy which, in the usual notation, is given by 

K22 K,, 
(2) FeI = - (n rotn + qo)2 + - (n A rot nl2. 

Here qo is the wave number of the pitch of the helix due to the chirality of the 
constituent molecules. Since 

rotn = rotc = -qc,  
where q = db jdz ,  

2 2 

K22 K33 2 2 2 - (qc2 - qd2 + - q n,c . FeI = 
2 2 (3) 

It has been argued theoretically [4,5,8,16] and shown experimentally [6,17,18] that 
in a chiral smectic C phase there is a spontaneous polarization P along n A c. The 
corresponding contribution to the free energy can be written as [8,16] 

1 
Fp = - (p,(n A c)  - pr(n A rot c)) - P + - P - P. 2x (4) 
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The pitch in the chirul smectic C phase 523 

Here ,up and ,uf are the piezo-electric and flexo-electric moduli, which describe the 
coupling between the polarization on the one hand and the tilt and the bend on the 
other; x is the dielectric susceptibility, which is of the order unity. Minimizing Fp with 
respect to P = (I‘K, P,,, 0) yields 

P = x(p,(n A c) - pr(n A rotc), 

= X b p  + qPr)(n A c), 

and 

Summing equations (l), (3) and (6) gives the total free energy F, which can be written 
as 

4 4  F = $(a - X&)n;c2 + - n,c + +K2,(qc2 - qo)2 
4 

(7) 2 2 2  + i W 3 3  - X P f ) 4  n*c - XPpPf9n;c2. 

Here q is the actual wavenumber of the helix, which can be found by minimizing F 
with respect to q. Thus for c2 # 0, 

which relates the wavenumber q of the actual pitch with the coefficients qo, pp and ,uf 
appearing in the phenomenological description of the chiral smectic C phase, equation 
(7). Since both c2 (= sin’ 8) and n; ( = 1 - c’) have to be non-zero, this relation clearly 
depends on the tilt angle 8, which has not been shown or noticed before [S, 14,15,16]. 
Compared with the twisted nematic phase for which c2 is unity and q = qo there is, 
in the chiral smectic C phase, an additional contribution to q due to the spontaneous 
bend and proportional to xpPpf [4,5,8]. A molecular theory of q for the chiral smectic 
C phase given a finite 8, that is given orientational order with respect to a tilted 
director, requires a calculation of qo, pp and pf in terms of molecular properties. In 94 
however it is shown that for all practical purposes the influence of the terms deter- 
mined by pp and pf is negligibly small. It suffices therefore to calculate qo, the 
wavenumber of the unperturbed helix in the smectic C phase caused by the molecular 
chirality; this is done in the following section. 

3. Microscopic theory 
It has been shown that the interplay between the induced molecular dipoleaipole 

interaction, Vpp,  and the dipole-quadrupole interaction, Vp4, results in the helical 
structure of the cholesteric phase [19]. The helical twist in the ground state of the 
chiral smectic C phase can be described along the same lines. In order to do so we 
recapitulate the basic features to show the similarity of and the difference between the 
twist in these two phases. Consider therefore the interaction energies v;p” and Ky 
between two molecules i and j ,  which can be written quite generally as 
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Here (ap) and (a, by) are shorthand notations for products of molecular matrix 
elements of the dipole and quadrupole moment operators pu  and qtV respectively. The 
precise definition in the language of quantum mechanics is [19] 

(aB>i(a’B’)j = 1 (0 IpuI v > i (  VIP,( 0 > i ( O  Ipa.1 v’ > j <  v’ I P ~  10 )jIEw,,m, ( 1  1) 
Y,”’ 

(aD)i(a’t B’v’)j = 1 (OIpa I v > i  ( VIP, I0 )i<OIpa,I v’ > j <  v’I qry’I0 )j/’Evv,,W- (12) 
Y.V ’  

Repeated indices apy, which refer to the coordinates XYZ of a fixed macroscopic 
coordinate system, indicate a summation over the corresponding components. The 
notation used in equations (9) and (10) and defined in equations (11) and (12) is 
employed because it reflects clearly the transformation properties of these quantities, 
which are the same as those of the corresponding coordinates. The scalar rii is the 
absolute value of the vector rii = ( r t ,  r i ,  r:) pointing from the centre of mass of 
molecule i to that of moleculej. The quantities C!, and D!& in equations (9) and (10) 
are tensor elements depending on the relative positions of the molecules i andj,  i.e. 
on rii; they are defined by 

c!, = a,, - 3rtrj!/ri,  ( 1 3 )  

DZbY = (26,, - 5rtr$/ri)(3r//2rii) .  (14) 
The pair potential 

has been used for an internal field approximation in which the precise interaction 
= Cj  vj of one molecule with all the others is approximated by a suitably averaged 

interaction. This averaged interaction can be reduced to a tractable form by consider- 
ing the distribution of the centres of mass of the constituting molecules as cylindrically 
symmetrical with respect to the helix axis. This symmetry is reflected in the averaged 
values of the products CasCa,fl, and Ca,Da8,,y,. When the averaging is performed as 
prescribed in [ I91 only those combinations of Cap, C,,,. and Cub. DU,,,?,, survive that are 
even in r t  and r$ where tl and /3 are the coordinates of the plane perpendicular to the 
helix axis. In [19] the helix axis was chosen along the Y axis, because in cholesterics 
the helix axis is perpendicular to the director which is usually chosen along the Z axis. 
It was found in a straightforward way that the wavenumber qo (= 2n/po), with po being 
the pitch of the helix, is given by 

v. = VPP + K p  + y 

( ( X ,  YZ)’ - (Y ,  ZX)’ + (Z ,  X Y ) ‘ )  
( ( Z Z ) ’  - (XX)’  ) 40 = 7 

where the brackets ( ) denote a statistical average of the corresponding quantities. 
The prime on these quantities denotes the fact that they are defined with respect to 
a coordinate system X ‘ ,  Y’ ,  Z ’  continuously rotating around the helical axis, i.e. the 
Y = Y’ axis over an angle qo< ensuring that the local director is everywhere along 
the Z ’  axis. This enables the quantities (ap)’, etc., and therefore qo, to be expressed 
in terms of molecular quantities and of the orientational order parameters describing 
the local nematic order; <is the average distance of closest approach of two molecules 
along the helical axis. All the approximations made and calculations performed in 
order to obtain equation (15) apply equally to chiral smectics with the following 
provisos. 

(i) In chiral smectics the helix axis is along the normal to the smectic planes, 
usually denoted as the Z axis. Making therefore an appropriate change of coordinates, 
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The pitch in the chiral smectic C phase 525 

Y -, Z, Z -, X ,  X -P Y (equally the coordinate system may be rotated over 4 2  
around the X axis) equation (1 5) reads 

( ( X ,  YZ)’ + ( Y ,  ZX)‘ - (Z ,  XY)’ ) 
( (XX) ’  - (YY)’);T 

40 = 

(ii) The primed quantities in equation (16) refer to a coordinate system X’,  Y’,  
Z’ = Z ,  with X’ and Y’ rotating from layer to layer over an angle qoz around the 
layer normal Z ,  i.e. the helix axis. Neither of the axes of this coordinate system is 
along the local director, which is tilted with respect to the layer normal. We therefore 
define a rotating tilted coordinate system X ” ,  Y” ,  Z” by 

X ’  = X”, Y’ = Y”cos6 + Z”sin6, Z’ = - Y s i n 6  + Z”cos6 

with B being the tilt angle of the director in the smectic C phase. Then the Z “  axis is 
along the local director whereas the X” axis coincides with the two-fold symmetry axis 
in each smectic plane. Applying this transformation to the primed quantities in 
equation (1 6) gives 

where 
A = ( ( X ,  YZ + Z, XY - Y, X Z ) ” ) ,  

B = ((2, XY - X ,  YZ - Y, Z X ) ” ) ,  

AN = ( ( Z Z ) ”  - +(XX + Y Y ) ” )  ( ( Z Z  - X X ) ” ) ,  

6a = ( ( X X -  YY)”)  
and 

l’(6) = 12(1 - 1sin28), ,I = 1 - d2/I2 < 1, (19) 
with I the length and d the diameter of the molecules. Here we have not considered 
the existence of a non-vanishing ( ( Y Z ) ” )  1121, which does not interfere with the 
results described in 94. Now we express the macroscopic quantities in equation (1 7) 
as defined in equation (18) in terms of molecular quantities and the order parameters 
describing the local orientational order in the X”, Y”, Z” coordinate system. This can 
be achieved by means of the transformation 

where X: = xx“  = cos x ~ , ~ ” ,  etc.--l(X,x. is the angle between the molecular x axis and 
the macroscopic X” axis, which can be written as a function of the Euler angles 4, 9, 
$ [19]. The order parameters describing the orientational order in the X“, Y”,  Z” 
coordinate system come to the fore quite naturally as [2&22] 

(21) 

s, = 4(3& - 1 )  = +(3C0S2g - I ) ,  
S, = (xzm 2 - y&)  = (cos2$,sin2$), 

S, = (z& - z:.) = (cos24sin2$), 

s, = $(<x$ - X’,”) + (y:” - y$))  x ( c o s 2 ~ c o s 2 ~ ) .  
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For the macroscopic anisotropy Aa and the macroscopic biaxiality 6a we then find 

whereas the quantities A and B can be written as 

A = Y(S, - ts,> - (5 - tos2 + is,, (24) 

B = (5 - f l ) S 4  - 75’3. (25) 

= ( z z )  - i (xx  + yy) ,  @b = (xx - yy) ,  (26) 

Here aa, ab, y, < and 5 are molecular quantities formally defined as 

Y = (x, V Z )  - (.Y, ZX), 5 = (z, X Y ) ,  5 = (x, Y Z )  + (.Y, ZX) .  (27) 

reflecting their symmetry properties on a molecular scale. The precise definitions of 
all thk separate terms in these quantities is given by equations (1 1) and (12) for (ab) 
and (a, by) respectively, where a, and y then refer to the molecular coordinates z ,  
x and y .  

The definitions given in equation (21) clearly reflect the uniaxial symmetry of the 
order described by S ,  and S2, being defined with respect to the Z” axis only. In order 
that S3 and S,,  which are defined with respect to the X” and Y axes, are non-zero, 
the orientational distribution function must be biaxial; then in addition there is a 
macroscopic biaxiaiity, whatever its magnitude [21, 22, 241. 

4. Discussion 
Before discussing the tilt and temperature dependence of the pitch we shall show 

that the influence of the spontaneous polarization on the pitch, as described in 
equation (7), is rather small. From the experimental data we may conclude that an 
upper limit to Po, defined in equation (5 ) ,  is 10nC/cm2 [6,7,1&18]. In [16] it is 
concluded that the flexo-electric contribution to Po, cf. equation (9, is a t  best 10 per 
cent; the accepted order of magnitude of pf is 10-5dyne [6,16]. With q 1: IO4cm-’ 
we have, qpf N 10-1(0)dyne”2/cm. From the definition of Po we then find an upper 
limit for pP, i.e. pp 5 10’‘O)dyne/cm. Comparing xpLppf 5 10-4dynecm-’ with 
K22q0 2 lo-’ x 104dynecm-’ = 10-3dynecm-’ and xp; 2: 10-’0(9)dyne with 
K33 > IO-’dyne we may indeed conclude that the influence of the spontaneous 
polarization on q is negligible. Equation (8) can then be written as 

K22 40 
= K22c2 + K,,n;’ 

- 40 - 
K - ( K  - l)sin28’ 

where K = K,,/K,, and qo is given by equation (17), i.e. 

Asin28 + Bcos28 1 
qo = Ao!sin28 - 6acos28 12(1 - dsin’8)’ 

The anisotropy Aa and biaxiality 6c(, defined in equations (22) and (23), are well- 
known quantities. The few experimental data indicate that 6a 5 10-2Aa; with 
@ > lo-’ rad the denominator can be written as Aa sin2 8. The quantities A and B are 
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The pitch in the chiral smectic C phase 527 

defined, in equations (24) and (25) respectively, in terms of the orientational order 
parameters S,,  i = 1, 2, 3, 4, and the molecular quantities y, ( and 5. Though 
information regarding the order parameters S,,  S, and S4 is scarce, it seems fair to 
state that they are of the order of lo-’. Then with 8 > lo-’ rad the numerator can 
be written as yS, sin’8. Collecting these results we find, with Aa ‘v a,S,, see equation 
(22), that equation (28) can be written as 

(30) 
Y 1 

= 126(, ( I  - Asin28)(lc - (IC - l)sin26)’ 

valid for 8 > lo-’ rad, i.e. T < Tscs, - 1 K where T,,,, is the smectic C-smectic A 
transition temperature. The tilt dependence of the pitch is then determined by the tilt 
dependence of the bend deformation and the layer thickness. Accordingly the tem- 
perature dependence of the pitch is determined by the temperature dependence of the 
tilt angle 8; with increasing temperature 8 decreases, q decreases and p increases, 
which is indeed the general trend reported [6,7]. 

Finally we want to discuss the behaviour of p when T approaches the transition 
temperature, Tscs,. Experimentally we know that in a very small temperature region 
near TscsA, p decreases very strongly [6,7]. We propose a tentative explanation which 
is hard to prove but seems plausible. There is experimental evidence that the 
biaxiality 6a near Tscs, is proportional to sin’8 [22,24]. Then the denominator, 
Aa sin’ 8 - 6a cos’ 8, in equation (29) is in its entirety proportional to sin’ 8, which for 
T -+ TscSA goes to zero as 8’ oc (T,,,, - T)28;  here 0.5 > B > 0.35 [24]. There is 
also experimental evidence that the spontaneous polarization P = Po sin 8, cf. 
equation (9, near TScSA goes to zero as 0, indicating that Po ct; ( xy ) remains finite 
up to Tscs, [6,7, 171. Here ( xx-) is the polar order parameter which describes the 
averaged orientation of the x component of the molecular dipole with respect to the 
macroscopic X” axis, i.e. the two-fold symmetry axis. As a non-vanishing polarization 
requires a coupling of the transverse dipole with the chiral centre [4,6,7] we may then 
expect that the bipolar order parameter 

s, = +((x$ - x’,.) + <y’,. - y & ) )  

for the chiral centre, though small, also remains finite up to Tscs,. Since the numerator 
in equation (29) then remains finite, 

B = (l  - 30S4 

= IC/(2xq0) e2 
we find that close to Tscs,, 

and approaches zero as (T,,,, - T)’O. The physical idea is that the chiral interaction, 
trying to stiffen up the helical structure, remains finite whereas the resistance against 
it, i.e. the biaxiality ( ( X X  - YY)’), vanishes at the transition. At the same time it 
should be kept in mind that with 8 + 0 the concept of a helical structure ceases to 
be meaningful, because the length of the rotating c director, being proportional to 
sin 8, also goes to zero: in fact equation (8) is only valid for c’ # 0. In conclusion we 
have shown that the tilt dependence of the pitch in the chiral smectic C phase well 
below Tscs, is quite different from that close to Tscs,. This quite different dependence 
on 8 in combination with the temperature dependence of 8 itself explains at least 
qualitatively the quite different behaviour of the pitch as a function of temperature 
well below and close to Tscs,. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



528 W. J. A. Goossens 

References 
[ I ]  TAYLOR, T. R., FERGASON, J. L., and ARORA, S. L., 1970, Phys. Rev. Lett., 24, 359; 1970, 

[2] GOOSSENS, W. J. A. (to be published). 
[3] HELFRICH, W., and OH, C. S., 1971, Molec. Crystals liq. Crystals, 14, 289. 
[4] MEYER, R. B., LIEBERT, L., STRZELECKI, L., and KELLER, P., 1975, J .  Phys. Lett., Paris, 

[5] MEYER, R. B., 1977, Molec. Crystals liq. Crystals, 40, 33. 
[6] DURAND, G., and MARTINOT-LAGARDE, P., 1980, Ferro-electrics, 24, 89. 

Zbid., 25, 122. 

36, 69. 

[7] MARTINOT-LAGARDE, P., DUKE, R., and DURAND, G., 1981, Molec. Crystals liq. Crystals, 
75. 249. 

[8] PIKIN, S. A., and INDENBOM, V. L., 1978, Ferro-electrics, 20, 151. 
[9] VAN DER MEER, B. W., and VERTOGEN, G., 1979, Physics Lett. A, 74, 239. 

[lo] NAKAGAWA, M., 1985, Molec. Crystals liq. Crystals, 130, 349. 
[11] VAN DER MEER, B. W., and VERTOGEN, G., 1979, J. Phys., Paris, CON., 4KC3-222. 
[I21 GOOSSENS, W. J. A,, 1985, J.  Phys., Paris, 46, 141 I .  
[13] GOOSSENS, W. J. A. (to be published). 
[I41 INDENBOM, V. L., PIKIN, S .  A., and LOGINOV, E. B., 1976, Soviet Phys. Crystallogr., 21,632. 
[15] MICHELSON, A., BENGUIGI, L., and CABIB, D., 1977, Phys. Rev. A, 16, 394. 
[16] MARTINOT-LAGARDE, P., and DURAND, G., 1980, J .  Phys. Lett . ,  Paris, 41, 43. 
[17] MARTINOT-LAGARDE, P., 1977, J. Phys. Lett., Paris, 38, 17. 
[18] PETIT, L., PIERANSKI, P., and GUYON, E., 1977, C .  r .  hebd. Skanc. Acad. Sci., Paris B, 248, 

[19] GOOSSENS, W. J. A., 1979, J. Phys., Paris, Coll., 40, C3-158. 
[20] STRALEY, J. P., 1974, Phys. Rev. A, 10, 1881. 
[21] PHOTINOS, D. J., BAS, P. J., DOANE, J. W., and NEUBERT, M. E., 1979, Phys. Rev. A, 20, 

[22] LOCKHART, T. E., GELERINTER, E., and NEUBERT, M. E., 1982, Phys. Rev. A, 25, 2262. 
[23] DIANOUX, A. J., and VOLINO, F., 1980, J.  Phys., Paris, 41, 1147. 
[24] GALERNE, I., 1978, J. Phys., Paris, 39, 131 1. 

535. 

2203. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
4
3
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1


